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SUMMARY 
A three-dimensional model has been developed to compute the thermofluid transport within a discharge 
arctube. The model has proved very useful for guiding the choice of design parameters to optimize the lamp 
performance. However, uncertainties exist with respect to quantitative aspects of The physical model, 
especially those related to radiation heat transfer. In the present work a grid refinement procedure and an 
adaptive grid method are used to improve the quantitative accuracy of the model and to help improve the 
physical modelling. The adaptive grid method, based on the multiple one-dimensional equidistribution 
concept, can responsively redistribute the grids to optimize the grid resolutions. Adaptive grid solutions 
modify the predicted maximum gas temperature, the buoyancy-induced convection strength, the location of 
the high-temperature core, and the wall temperature profiles. The adaptive grid solutions show more 
consistent trends when compared to the measurements. On the basis of the quantitatively more definite 
information, adjustments can be made with regard to the uncertainties of the physical model. 
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1. INTRODUCTION 

The important effect of convection on the heat transfer rate and overall performance of a high- 
pressure discharge lamp has now been well recognized.' - 6  Until very recently, research on 
convection transport within the discharge lamp has been based largely on experimental or 
empirical approach.' Zollweg' and Lowke3 were the first to conduct the analytical and 
computational study of this important process based on first principles. In References 2 and 3 the 
fluid flow and energy equations in an axisymmetric domain are solved. Recently, progress has 
been made along the line of computational modelling in a three-dimensional d ~ m a i n ~ - ~  with the 
capability of handling the irregular and complex geometry of the arctube, including the curved 
surface and electrode insertion. The model advanced in References 4-6 solves the combined 
momentum, mass continuity, energy and electric field, based on first principles, and simplified 
radiation transfer equations using a finite volume algorithm in general curvilinear co- 
ordinates.' - 9  Both straight and curved arctubes have been studied and their impact on overall 
performance predicted. Good agreements have been obtained in terms of mounting angle,4*6 
curvature effect and wall temperature distribution.6 These favourable agreements indicate that 
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the computational model based on first principles and simplified modelling can make a truly 
useful contribution by guiding the choice of design parameters to optimize lamp performance, at 
least in a qualitative way. In fact, useful information has already been supplied to the designers for 
understanding the flow and thermal phenomena occurring in the discharge arc and for improving 
the design. 

We are, of course, also well aware of the fact that the combined mass, momentum, energy and 
electricity transport process in the arctube is an extremely complicated one. Many uncertainties 
are present in the modelling process, as briefly discussed in Reference 6. For instance, one of the 
major difficulties is the appropriate treatment of radiation heat transfer. Since the plasma arc 
temperature within the arctube can approach or exceed 7000 K, the radiation transfer mode is 
expected to play a very important role. Unfortunately, owing to the large degree of geometric 
complexity in the curved arctube, a preferred shape for the horizontal mounting position, it is not 
practical to do a detailed computation of the radiation transfer in three dimensions. In 
References 4-6 a much simplified treatment has been used. It requires the prescription of 
adjustable parameters such as the absorption coefficients of radiation in the colder mercury 
vapour and by the wall. There is not enough information for one to determine these coefficients a 
priori. For instance, in References 4-6 the coefficients are determined first by limited empirical 
information and then adjusted by inspecting the differences between the predicted and measured 
temperatures. Although it has been found that qualitatively the results predicted in 
References 4-6 are not sensitive to these adjustable parameters, exact quantitative solutions are 
obviously dependent upon the choice of them. 

It is noted that in References 4-6 relatively coarse grid systems with 29 x 13 x 13 and 
29 x 17 x 13 grid points were employed. Since the Grashof number is estimated to be of the order 
of lo5, it is expected that a more refined treatment of the grid system is needed in order to obtain 
numerically definite solutions. It is on the basis of this background that we have embarked on the 
present study. The goal is to increase the number of grid points on one hand and to utilize the 
available amount of grid points as effectively and optimally as possible. Once a numerically more 
definite solution is achieved, one can better assess the appropriate choice of adjustable parameters 
introduced in the simplified models. 

The approach undertaken in the present study is to employ an adaptive grid computational 
method developed and successfully applied earlier lo -  l Z  to help optimize the grid distribution 
within the arctube. The curved arctube studied in Reference 6 is chosen as the model here since a 
substantial amount of information is available both theoretically and experimentally. Four 
different systems with different distributions as well as total numbers of grids (ranging from 
29 x 17 x 13 to 29 x 29 x 29) have been used here. 

2. ARCTUBE GEOMETRY AND PROBLEM FORMULATION 

The geometrical definitions of the arctube along with electrodes are given in Figure l(a). 
Schematic illustrations of two-dimensional representation grid projections of one middle side- 
view plane, one cross-section plane containing the electrode and the middle cross-section plane of 
symmetry are shown in Figures l(b)-l(d) respectively. Three-dimensional illustrations of the 
curved arctube under study are shown in Figures l(e) and l(f). Table I shows the geometric input 
data for the arctube used here. The input power and mercury pressure are 400 W and 3 atm 
respectively. 

To resolve the geometrical complexities of the arctube and electrodes, the transport equations 
are solved by an algorithm developed for solving Navier-Stokes flows using general non- 
orthogonal curvilinear co-ordinates. - 9  The volumetric source-terms driving the flow are ohmic 
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Figure 1. (a) Arctube design with symmetrical bowl ends. (b) Corresponding computer-generated geometry and mesh. 
(c) Mesh of a cross-section containing the electrode. (d) Mesh of the middle cross-section plane 

Figure l(e). Half of the arctube with the front wall removed (in 3D perspective) 

Figure l(f). Computer-generated geometry and mesh (in 3D perspective) 
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Table I. Model input 

400 W curved arctube 
Symbol Geometric design parameters model data 

Arctube diameter (mm) 15.1 
Arctube length (mm) 59.3 
Electrode insertion length (mm) 9 3  
Offset electrode distance (mm) 2.3 
Radius of bend (mm) 25.4 
Angle of bend (deg) 40 
Wall thickness (mm) 1.2 

heating and radiation cooling, which enter the energy equation, and gravitation, which enters the 
momentum equations. 

The governing equations are first written in the strong conservation law form in Cartesian co- 
ordinates for the dependent variable 4: 

Here r is the effective diffusion coefficient and R is the source term, including the gravitational 
force in the momentum equation, and ohmic heating and radiation transfer effects in the energy 
equation. Equation (1) can represent the continuity, momentum, energy and electric field equa- 
tions (equation (2)). When new independent variables 5, r]  and y are introduced, equation (1) 
changes according to the general transformation 5 = 5(x, y, z), q = q(x, y, z), y = y(x, y, 2). The 
result of this co-ordinate transformation is to transform the arbitrarily shaped physical domain 
into a rectangular parallelepiped. 

The electric field equations can be expressed in terms of electrostatic potential in the form 

V*(TV@ = 0. (2) 
Here (T is the electrical conductivity and is the electrostatic potential. It should be noted that the 
strong temperature dependence of the electrical conductivity produces a strong coupling between 
the electric field equations and the thermofluid transport equations. This is especially true near 
the electrode tips, where this coupling is responsible for attaching the arc to the electrode tips. The 
full treatment of gas-to-gas radiation is very complex and is not practical for three-dimensional 
problems because the necessary computations would consume enormous computer time. The 
simplified treatment is given by 

radiant heat loss = Aurad + 1.425 x 10-'4exp(C/T), (3) 
where C = - 8.0661 x lo4; T is temperature and Aurad is a constant which represents the energy 
(per unit volume) absorbed in the cold gas region. 

Boundary conditions are imposed at the quartz wall of the arctube and the surfaces of the 
electrodes. For the fluid flow calculation, conventional no-slip boundary conditions are applied 
on the entire boundary for the velocity components. For electric field calculations the electrodes 
have surfaces of uniform electrostatic potential and the normal component of the current density 
is zero at the wall. 

The temperature distribution of the quartz inner wall is determined by the energy balance, 
equation (4), at the gas-wall boundary, which consists of three terms: the energy conducted to the 
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wall by the gas, the radiant energy absorbed by the wall and the energy conducted through the 
arctube wall. The temperature distribution of the quartz outer wall is determined by the energy 
balance, equation (9, at the arctube outer boundary, which consists of two terms: the energy 
conducted to the outer boundary through the wall thickness and the energy radiated by the wall. 
The above terms are formulated as 

TW - TP energy (per unit area) conducted to wall by gas: -kgas- 6 ’  

radiant energy (per unit area) absorbed by wall: C R ,  

Tqtz - Tw 
t ’  

energy (per unit area) conducted through wall thickness: - kqtZ 

energy (per unit area) radiated by wall: m( T& - T:J, 

where k is the thermal conductivity, which is a function of temperature, T is the temperature in K, 
‘I” stands for the centre of a control volume, ‘w’ stands for the quartz inner wall, 6 is the normal 
distance from the centre of the fluid control volume to the wall, C is the fraction of radiation 
impinging on the wall that is absorbed, R is the radiation impinging on the wall per unit area, ‘qtz’ 
stands for quartz, Tsink is the outer jacket wall temperature, t is the quartz wall thickness, u is the 
Stefan-Boltzmann constant and E is the quartz emissivity, which is a function of temperature. 

Order-of-magnitude analysis indicates that as far as conduction in the wall is concerned, the 
radial direction is the only dominant one. Conduction along both the longitudinal and circum- 
ferential directions of the wall is negligible. 

An accurate treatment of the radiant energy absorbed by the wall is a difficult task owing to the 
irregular 3D geometry and the moving hot arc position during iterative calculation. The fraction 
of radiation impinging on the wall that is absorbed is also difficult to determine. Theoretically it 
depends on wavelengths as well as on temperature. To obtain an approximate treatment of this 
term, view factors from the hot arc to the inner wall were calculated from the software RAVFAC, 
documented in a NASA contractor report.I3 The geometry of the curved arctube was treated as a 
cylinder with flat end-caps and the hot arc considered as a much smaller concentric cylinder 
between the electrode tips within the arctube.6 

Both measurements and calculations of the outer quartz wall temperatures were conducted 
with a vacuum outer jacket so that the convection effect outside the arctube is not present. 

The convective flow in the discharge is assumed to be purely laminar; this assumption is 
supported by both the experimental evidence and the calculated Grashof number. For all the 
derivatives in the transport equations, convection terms included, the second-order central 
differencing scheme is employed for discretization. A multigrid method is employed for solving 
the resulting difference equations. In the following, the basic idea of the adaptive grid com- 
putation and specific features adopted in the present work are given. 

The most appealing aspect of the adaptive grid method is that the grid distribution can be 
adjusted in an intelligent way without resorting to a priori knowledge and/or the intuition of the 
user, and hence one can reduce the size of the grid system that is needed to yield an accurate 
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solution. This was exemplified in the study conducted by DeVahl Davis and Jones.14 In 
comparing the various numerical methods submitted by many individuals for calculating the 
natural convection in a square cavity, they found that, to their surprise, the use of a non-uniform 
grid distribution generated by intuition did not, on the whole, yield better numerical accuracy 
than that of a uniform grid distribution. This finding demonstrates that while a denser distribu- 
tion of mesh points in 'suitably chosen' locations should lead to improved accuracy, how to 
choose such suitable locations and the effects of the consequently coarsened grid distribution 
elsewhere on the numerical accuracy must be considered carefully. 

For multidimensional Navier-Stdkes flow, effective application of the adaptive grid method 
cannot be made unless issues such as the different characteristics of the dependent variables in a 
coupled system of equations, the non-linear behaviour of the flow and extra complexities 
introduced by the non-regular flow configurations are appropriately resolved. Several methods 
have been proposed in the literature to utilize the adaptive grid method for fluid flow com- 
putation. For example, Dwyer et ~ 1 . , ' ~  Rai and Anderson,"j Bell and S h ~ b i n , ' ~  Nakahashi and 
Deiwert'* and Ghia et a1." have demonstrated the effectiveness of their method with different 
formulations. Anderson," Thompson'' and Eiseman" have given comprehensive surveys of 
this topic with many relevant references. Here we have adopted an adaptive method developed 
earlier"- which is based on the concept of multiple one-dimensional equidistribution. The 
method has been found to yield characteristics of error reduction that are consistent with 
analytical work of Babuska and Rheinboldt. 23 Several successful applications have also been 
demonstrated with interesting features presented. 

The basic idea developed there also accounts for the important fact that for the Navier-Stokes 
equations the various dependent variables can have different characteristics, depending on the 
flow configurations. 

The adaptive grid method is based on the idea that grid points will be distributed along a given 
arc length in space, depending on the weighting function. The mathematical expression of this 
idea is as follows: 

where 5 is the general co-ordinate, Wis the weighting function used to adapt the grid distribution, 
s is the arc length and s,,, is the maximum arc length. If < is incremented with a constant value, 
equation (6) implies that 

WiAsi = constant for all i ,  (7) 

where i is the nodal number of the discrete grid points, Asi is the interval along the given arc and 
Wi is the corresponding weighting function in the interval. There are many ways to construct the 
weighting function, such as taking into account the relative importance of three factors: (a) total 
arc length (smoothing term), (b) dependent variable function variation (first derivative) and 
(c) dependent variable slope variation (second derivative). In general, W can be written as 

(8) 
The numerical procedure used in References 10-12 was that the grid adaptation starts with the 
uniform grids and the numerical solutions obtained on them. The uniform grid solution is used to 
estimate W and the new grid positions are determined from the following equation, which is 

w = a +f(4,,4,,, . . .). 
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equivalent to equation (6): 
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(9) 

with 5 incremented uniformly from one grid to the next. By solving equation (9), the grid positions 
of the si can be determined one by one. The new grid positions are then in turn used to recalculate 
the numerical solution of the Navier-Stokes and associated transport equations. 

It has been demonstrated that one advantage of this a posteriori multiple one-dimensional 
adaptive grid method is its flexibility and ease in adding grid points along the co-ordinate lines if 
desired." It was also shown that in the multistage adaptive grid procedure the resulting grid 
system is already close to optimum after a few stages of adaption. Furthermore, as the adaptive 
readjustment of the grid distribution proceeds from the initial grid system, not only is the overall 
error reduced but the error distribution appears more uniform. ' 1 7 2 3  The present adaptive grid 
method has been applied to compute the two-dimensional natural convection problem.' 
Comparisons of the solutions on uniform and adaptive grids with the reported benchmark results 
have demonstrated the important contributions the adaptive grid method can make in resolving 
complicated flow characteristics. 

One important issue of the adaptive grid computation is the possible appearance of highly 
skewed meshes in the flow domain. In this regard, several treatments can be employed. In 
Reference 12 a combined use of variational type of adaptive grid formulation as a postprocessing 
treatment in conjunction with the aforementioned multiple one-dimensional procedure has been 
found effective for the natural convection flow within an enclosure. In the present study it is found 
that a straightforward implementation of the aforementioned multiple one-dimensional adaptive 
grid method can be utilized without the adverse effect of grid skewness. The present work also 
represents the first three-dimensional application of the present adaptive grid method. 

3. RESULTS AND DISCUSSION 

Four grid systems with different distributions and numbers of nodal points are employed. The 
coarsest mesh system, with 29 x 17 x 13 nodal points, as shown in Figure 2(a), is the same one as 
used in Reference 6, in which a largely uniform mesh distribution is given except near the top and 
bottom wall regions where the meshes are locally more refined than in the other regions. A grid 
system of 29 x 19 x 19 nodal points and smooth mesh spacings without adaptive local grid 
clustering is shown in Figure 2(b). The finest mesh systems contain 29 x 29 x 29 nodal points. 
Figure 2(c) shows the smooth grid system. Based on the solution obtained on Figure 2(c), an 
adaptive grid system is generated as shown in Figure2(d). In the adaptive procedure the 
weighting function is of the form 

Here the weighting function is comprised of the linear and non-linear contributions from the 
temperature field in order to cluster the nodal points more responsively. 

The formula of equation (10) was chosen to balance the competing features of the high- 
temperature gas in the core region, which is around 7000 K, and the much colder wall region, 
which is less than 1000 K. The hot gas core needs good mesh resolution because the strength of 
convection field is determined largely by the temperature and density gradients there. The wall 
region also needs good mesh resolution because the overall heat transfer rate, which is determined 
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Figure 2. Top: middle side-view plane (plane of symmetry). Middle: cross-section plane no. 8. Bottom: middle cross- 
section plane (plane no. 15). (a) 29 x 17 x 13 non-adaptive grids. (b) 29 x 19 x 19 non-adaptive grids. 

by estimating the temperature gradient, is determined as part of the boundary conditions. 
Furthermore, since in the present applications the wall temperature distribution is of critical 
importance to the design optimization, accurate numerical values of wall temperature profile are 
part of the key output of the prediction. The combination of the linear (aT/as)  and non-linear 
(8 Ts/8s)  terms was designed to compromise this need. The non-linear term of the weighting 
function formulation can also partially accommodate the extremely non-linear variation of the 
source term in the energy equation arising from the radiation heat transfer model. As to the 
smoothness factor in equation (lo), there is no known value that is uniquely suited. Our 
experience has suggested that any number of order unity is acceptable. The adaptive remeshing is 
conducted with the aforementioned multiple one-dimensional procedure on each cross-section 
plane sequentially. More specifically, the basic process as it takes place in each cross-section plane 
is a four-step one: the solution of temperature obtained on the original grid system as shown in 
Figure 2(c) is extracted; the temperature field is normalized by the maximum magnitude pre- 
sented in the individual cross-section plane; the adaptive remeshing process is conducted along 
the two family co-ordinate lines sequentially according to the weighting function (equation (10)) 
with a = 3; solutions of all other flow variables are extracted and interpolated (including 
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Figure 2 (continued). (c) 29 x 29 x 29 non-adaptive grids. (d) 29 x 29 x 29 adaptive grids. 

temperature) on the newly redistributed grid as shown in Figure 2(d). After all cross-section 
planes have been processed one by one in this orderly manner, the new grid and flow variables are 
then used by the flow solver to continue the computation. 

All the computations reported in the present work were conducted on a VAX/8600 computer. 
A solution is considered to be converged if the overall residual from the continuity, momentum 
and energy equations, defined as the absolute sum of the residuals of all the finite volumes, is 
smaller than A typical calculation requires about 800 iterations of a 29 x 17 x 13 grid 
system. A two-level multigrid method has been used to solve the pressure correction equation, 
while a point SSOR method has been used to solve the other transport equations to optimize the 
computational effort. In terms of CPU time, with a 29 x 17 x 13 grid system it takes 1-4 h for 
every 100 global iterations. The present adaptive grid method utilizes a sequential approach; 
however, the solution based on the original initial grid system need not be solved to very high 
accuracy. As stated earlier, the adaptive grid distribution, with the aid of the smoothness term, is 
reasonably insensitive to low-level noises of the solution. In the present case, since the flow field is 
induced by the temperature non-uniformity, the grids obviously should reflect the temperature 
field faithfully. As will become clear later on, the grids shown in Figure 2(d) do reflect the 
characteristics of the temperature field. For example, in the cross-section plane no. 8, which is 
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close to the tip of the electrode, substantially refined grid resolutions have been produced in the 
lower central domain where the high electric field adjacent to the electrodes heats up the gas 
substantially. In the cross-section plane no. 15, which is the plane of symmetry, the grids tend to 
show opposite features, namely the central domain is of coarser meshes while the outside region is 
of finer meshes. This feature is caused by the situation that although the temperature in the core is 
very high, it is relatively smooth in distribution. In the wall region, on the other hand, there is a 
substantial temperature gradient owing to the large heat transfer rate across the arctube wall. The 
middle side-view plane reveals the same characteristics from a different viewpoint, which shows 
more concentrated grid distributions in the region of high temperature gradients. The various 
features of the computed velocity and temperature fields on the four different grid systems will be 
assessed and compared next. 

Figure 3 compares the temperature contours of the middle side-view plane obtained on the 
four grid systems. All four solutions are qualitatively very similar, thus rendering the credibility 
of the results presented in References 4-6. Nevertheless, there are discernible differences in 
terms of the quantitative distributions shown in Figure 3. On the smooth grid systems the 
maximum gas temperature increases monotonically as the number of grids increases, i.e. from 
6931 K (29 x 17 x 13 grids) to 7096 K (29 x 19 x 19 grids) to 7165 K (29 x 29 x 29 smooth 
grids). With the use of the adaptive grid procedure the grid distribution is responsive to the 
temperature characteristics. However, the adaptive grid solution shows that the maximum gas 
temperature is 6938 K, which is very close to that of 29 x 17 x 13 non-adaptive grids. Inspections 
show that the contributing factors to the same level of maxinum gas temperature obtained on the 
coarse non-adaptive grids and the fine adaptive grids are different. As will be demonstrated in the 
following, the intrinsic three-dimensionality of the transport characteristics is mostly responsible 
for the phenomenon. It also illustrates the difficulty that one may encounter in accurately 
modelling and computing the present three-dimensional thermofluid transport process. 

Table I1 and Figures 4 and 5 summarize the major information on the velocity components 
along the horizontal (axial) and vertical co-ordinates and the range of temperature distribution in 
the cross-section plane no. 8, which is next to the electrodes. Because the flow field is highly three- 

Figure 3. Temperature contours in the middle side-view planes (planes of symmetry): (a) 29 x 17 x 13 non-adaptive grids, 
max. temperature 6931 K; (b) 29 x 19 x 19 non-adaptive grids, max. temperature 7096 K; (c) 29 x 29 x 29 non-adaptive 

grids, max. temperature 7165 K, (d) 29 x 29 x 29 adaptive grids, max. temperature 6938 K 
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Table 11. Velocity and temperature fields in cross-section plane no. 8 (adjacent to the electrodes) 

Grid V,(cms-') V,(cms-') T (K) 
Min. Max. Overall Min. Max. Overall Min. Max. Max.-Min. 

strength strength 
(max. - min.) (max. - min.) 

29 x 17 x 13, -9.89 9.52 19.41 -3.63 21.30 24.93 751 6931 6180 
non-adaptive 
29 x 19 x 19 -10.12 10.17 20.29 -4.12 20.46 24.58 779 7096 6317 
non-adaptive 
29 x 29 x 29, -10.58 10.22 20.80 -4.20 20.42 24'62 774 7165 6391 
non-adaptive 
29 x 29 x 29, -10.40 10.35 20.75 -4.29 17.90 22.19 778 6938 6160 
adaptive 

Figure 4. Temperature contours in cross-section plane no. 8 (adjacent to the electrodes): (a) 29 x 17 x 13 non-adapative 
grids, max. temperature 6931 K; (b) 29 x 19 x 19 non-adaptive grids, max. temperature 7096 K; (c) 29 x 29 x 29 non- 

adaptive grids, rnax. temperature 7165 K; (d) 29 x 29 x 29 adaptive grids, max. temperature 6938 K 

dimensional, various factors such as arctube curvature, buoyancy and electric discharge interact 
with one another in complicated manners. As evidenced in Table 11, one of the salient features 
depicted by the grid system is that as the grid resolutions are progressively improved by adding 
nodes and by adaptively redistributing nodes, the three-dimensionality of the flow field becomes 
more pronounced. The observation is supported by the fact that the overall strength of the 
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Figure 5. Velocity vectors in 
grids, max. V, = 952 cms-', 
max. V,  = 20.46 cm s- I; (c) 

(d) 29 + 29 

cross-section plane no. 8 (adjacent to the electrodes): (a) 29 x 17 x 13 non-adaptive 
max. V, = 21.3 cms-'; (b) 29 x 19 x 19 non-adaptive grids, max. V, = 10.17 cms-', 
29 x 29 x 29 non-adaptive grids. max. V, = 10.22 cm s-', max. V, = 20.42 cms-'; 
+ 29 adaptive grids, max. V, = 10.35 cms-', max. V, = 17.90 cms-' 

horizontal velocity component ( V,) and the overall strength of the vertical velocity component 
(V,,), measured by the differences between the maximum and minimum values in plane no. 8, 
become progressively more comparable as the grid resolution improves. 

With respect to the temperature field, no monotonic trend can be established in terms of the 
maximum temperature. Both the coarsest non-adaptive grid system with 29 x 17 x 13 nodes and 
the adaptive grid system with 29 x 29 x 29 nodes show more uniform temperature distribution. 
However, the reason for the uniformity of temperature distribution of the 29 x 17 x 13 non- 
adaptive grids is inadequate grid resolution. The apparent closeness of temperature levels 
between the coarse non-adaptive and fine adaptive grid systems is coincidental. Figure 4 shows 
that the actual distributions of temperature contours between the two solutions are not the same. 
The location of the hot temperature core gradually but monotonically moves downwards as the 
grid resolution improves. The lower level of maximum temperature predicted by the coarse grid 
system is caused by inadequate grid resolution. The adaptive grid solution, on the other hand, 
predicts a stronger three-dimensional velocity field which results in a more effective transport 
process to reduce the maximum temperature. Furthermore, as will be shown in the following, 
these different mechanisms also cause the overall wall temperature distributions to be different on 
different grid systems. 

It is also interesting to note that the convection strength of the gas flow does not necessarily 
correlate with the maximum gas temperature in a monotonic manner. One may expect that with 
the higher degree of heating associated with the better-resolved temperature field close to the tips 
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of the electrodes, the density non-uniformity increases, which should result in a stronger 
buoyancy effect on convection. However, there is a counteracting influence exerted by the 
temperature dependency of the viscosity. The formula adopted for computing the dynamic 
viscosity of mercury gas is as follows: 

( 1.486; lo4), 
p = 2.4789 x + 7.64 x 10-*T+ 1.039 x 10-3exp - 

with the unit of kg m-l  s-', where Tis the gas temperature in K. It is also noted that the Prandtl 
number is taken to be a constant Galue of 0.61. The equation of state under constant pressure is 

p = A/T+ B, (12) 
where A=7.122 x lo3 kgm-3 K and B =  -0.0465 kgm-3. Hence, as the maximum temper- 
ature increases, both the dynamic viscosity and thermal diffusivity increase, resulting in a larger 
viscous and conductive effect on the transport process. In terms of the Grashof number 

Gr = g d 3 A p / v 2 p ,  (1 3) 
where g is the gravitational acceleration, d is the arctube diameter, p is the density of mercury gas 
and v is the kinematic viscosity of mercury gas, it is clear that as the temperature increases, the 
proportional increase in the dynamic viscosity reduces Gr in a non-linear manner. By taking full 
account of the gas property variations with respect to the temperature effect, the convection effect 
does not always necessarily increase with increasing temperature and density non-uniformities. 
One can actually observe an inverse relationship between the temperature variation and 
convection strength. This trend cannot be accounted for by the simplified Boussinesq approxima- 
tion, which assumes that both the density and viscosity have constant values. Hence the effect of 
gas property variations on the convection strength cannot be properly incorporated by the 
Boussinesq approximation. 

A representative illustration of the velocity vectors in the middle side-view plane is given in 
Figure 6. In the regions close to the electrodes the convection strengths along the axial direction, 
i.e. u-velocity, are comparable to those induced directly by gravity, i.e. v-velocity. In summary, 
there are several competing transport characteristics present in the whole domain, namely the 
electric current and resultant ohmic heating, the buoyancy effect in cross-section planes and the 
curvature of the arctube. 

In the regions close to the electrodes the higher levels of temperature core there cause the 
transport process to be dominated by the combined effect of buoyancy and electric heating. Away 

t 
4 x  

Figure 6. Velocity vectors in the middle side-view plane (plane of symmetry) 



156 P. Y. CHANG AND W. SHYY 

Table 111. Velocity and temperature fields in cross-section plane no. 15 (plane of symmetry) 

Grid v,(cms-') T (K) Hot core 
displacement 

Min. Max. Overall strength Min. Max. Max.-min. (mm) 
(max. - min.) 

~~ 

29 x 17 x 13 -3.85 8.00 11.85 1049 6054 5005 - 1.2 
non-adaptive 
29 x 19 x 19, -4.24 7.47 11.71 1112 6108 4996 - 1.6 
non- adaptive 

non-adaptive 

adaptive 

29 x 29 x 29, -4.04 7.13 11.17 1112 6132 5020 - 1.9 

29 x 29 x 29, -4.34 7.10 11.44 1103 6103 5000 - 1.9 

Figure 7. Temperature contours in the middle cross-section planes (planes of symmetry): (a) 29 x 17 x 13 non-adaptive 
grids, max. temperature 6054 K; (b) 29 x 19 x 19 non-adaptive grids, max. temperature 6018 K, (c) 29 x 29 x 29 non- 

adaptive grids, max. temperature 6132 K, (d) 29 x 29 x 29 adaptive grids. max. temperature 6103 K 

from the electrodes the transport process is determined by the interactions of the physical and 
geometrical constraints. Consequently, the resulting pattern is complicated. Table I11 and 
Figures 7 and 8 compare the temperature and velocity distributions in the middle cross-section 
planes computed on the four grid systems. The hot core displacement is defined as the distance 
between the location of maximum gas temperature and the geometric centre of the cross-section. 
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Figure 8. Velocity vectors in the middle cross-section planes (planes of symmetry): (a) 29 x 17 x 13 non-adaptive grids, 
max. V,  = 8.00 cms-'; (b) 29 x 19 x 19 non-adaptive grids, max. V,  = 7.47 cm s-I; (c) 29 x 29 x 29 non-adaptive grids, 

max. V,=7.13 cms-'; (d) 29 x 29 x 29 adaptive grids, max. V, = 7.10cms-' 

All four systems show very comparable features, both qualitatively and quantitatively. The 
maximum values of the predicted gas temperature vary by no more than 1.3%. One can also 
observe that among the three non-adaptive grid systems the coarse mesh system produces lower 
values of the maximum temperature in both the end regions and the middle regions owing to the 
less than adequate spatial resolution. As for the adaptive grid solution, it shows similar features to 
the non-adaptive grid solutions in terms of distribution. This is because in the middle plane the 
concentrated effects of the electrodes are diminished and consequently there is no sharp gradient 
present in the plane. Nevertheless, a trend can still be observed for the displacement distance of 
the high-temperature core with respect to the grid resolution, which appears to be influenced by 
the temperature characteristics in the electrode regions. As already noted, the fine and adaptive 
grid solutions predicted larger hot core displacement in the electrode regions. 

Figure 8 shows the velocity vectors projected on the middle symmetry plane from the cross- 
sectional view. Again, qualitatively similar results are obtained on all four grid systems. Also, 
there is a discernible trend which shows that larger temperature variations do not always produce 
a stronger convection effect as a result of the strong temperature dependence of the mercury gas 
properties. 

Finally, Figures 9(b) and 9(c) show the comparisons of the wall temperatures between the 
experimental measurement and numerical predictions. The profiles are for the wall temperature 
along the top and bottom symmetry lines, from left to right. Figure 9(a) indicates the locations 
where the measured and predicted data are compared. For the top wall temperature, fairly close 
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Figure 9(a). The I-locations in the middle side-view plane where the measured and calculated data are compared 
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Figure 9(b). Temperature profiles of the top wall in the middle side-view plane 
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Figure 9(c). Temperature profiles of the bottom wall in the middle side-view plane 
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agreements have been obtained between the measurement and all of the predictions, except that 
the predicted centre top wall temperature depicts a trend of lower values with improved spatial 
resolution. More importantly, the overall variation of the top wall temperature becomes steeper 
as the grids are refined. For the bottom wall temperature the trend is no longer monotonic with 
respect to the grid spatial resolution. For the non-adaptive grid solutions there is a consistent 
trend which shows that the peak temperature on the bottom wall increases as the number of 
nodal points increases. The adaptive grid result shows a substantially different distribution. Its 
peak value is lower and its overall distribution is more moderate than the 29 x 29 x 29 non- 
adaptive grid solution, hence depicting better agreement with the measurement. Compared to the 
non-adaptive grid system with the same number of nodes, the adaptive solution shows more 
consistent profiles qualitatively. 

As already stated, large uncertainties may be contained in the physical submodules employed, 
especially the part of the radiation heat transfer. Hence what we have been striving to achieve in 
the present work is not to match the numerical values of the wall temperature profiles but to study 
the trend yielded by mesh improvement. For example, Figure 9(b) shows that the coarsest mesh 
system yields the best agreement with the measured top wall temperature profile; as the mesh 
distribution is improved, the agreement actually becomes worse. However, this feature should be 
combined with that of Figure 9(c), which shows that the coarsest mesh system yields the worst 
agreement with the measurement. The situation is opposite for the 29 x 29 x 29 non-adaptive 
grid system, which shows the best match with the bottom wall temperature profile but the worst 
match with the top wall temperature profile. Thus, regardless of whether the radiation heat 
transfer increases or decreases its role, either one or other of the two wall temperatures 
comparisons will become worse. The adaptive grid solution, on the other hand, shows a more 
consistent trend. Comapred with the non-adaptive grid solution for the same number of nodes, 
the adaptive grid solution underpredicts the wall temperature profiles for both top and bottom 
walls. Hence it will allow room for adjusting and refining the physical models to improve the 
overall prediction capabilities. 

4. CONCLUSIONS 

On the basis of the present study, the following conclusions can be made. 

1. The adaptive grid method can responsively reflect the solution profiles to optimize the grid 
resolutions. Large differences in grid distribution are observed in the region close to the 
electrodes where the finer meshes are clustered in the central portion, and in the region away 
from the electrodes where the finer meshes are distributed in the domain close to the wall. 

2. In the end zone the dominant driving mechanism of the transport process is the buoyancy 
effect resulting from the electric heating. By exercising the grid dependence tests with four 
different grid systems of different distributions as well as numbers of nodal points, a clear 
trend is established for the convection pattern in the end zone. As the spatial resolution 
improves, the convection strength along the horizontal direction beocmes more comparable 
to that of the contra-rotating cells in the cross-sections. Consequently, the velocity field is 
more strongly three-dimensional in nature. 

3. Since the present model fully accounts for the interdependence of the mercury gas properties 
with respect to the temperature effect, it is found that a higher temperature variation in a 
cross-section plane does not necessarily promote the convection strength. This result is 
caused by the strong effect of the temperature field on the viscocity and hence on the thermal 
conductivity. 
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4. The adaptive grid solution shows a reduced maximum gas temperature compared to the 
non-adaptive grid solutions with the same number of grid points. It predicts a more 
pronounced three-dimensional transport process which produces a more uniform gas 
temperature distribution. The qualitative agreements between adaptive grid solution and 
measurement for the wall temperature are more consistent in terms of overall trend. 

5. With regard to the non-adaptive grid solutions, the coarser grid system predicts a lower 
maximum gas temperature in both the end region and the middle region owing to 
inadequate spatial resolution. Based on results presented here, adjustments can be made in 
the physical modelling aspects such as radiation heat transfer employed in the computation. 
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